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SOME WINDOWS WITH VERY GOOD
SIDELOBE BEHAVIOR;

APPLICATION TO DISCRETE
HILBERT TRANSFORM

INTRODUCTION

The use of temporal weightings for spectral analysis, with good sidelobe behavior
and small bias, is well established and documented in Harris (ref. 1). However,
some of the plots of the spectral windows are not correct and do not have the op-
timal sidelobe levels claimed. We will present the corrected plots and some ad-
ditional windows with optimal properties. Finally, some of these results will be
applied to obtain a discrete Hilbert transform.

The temporal weightings considered will be continuous functions of time (except
possibly at ± L/2) and duration L; i.e.,

w(t)=0 for tl>L/2. (1)

The Fourier transform of the temporal weighting is the spectral window

W(f) = "dt w(t) exp(-i2nft) (2)

and is a continuous function of frequency, defined for all f. Notice the notational
convention adopted here: a weighting is applied multiplicatively in one domain, and
its Fourier-transform (called a window) occurs as a convolution in the other
domain.

All the window results presented here are obtained by exact analytical evaluation
of (2) and are valid for all values of f. However, window (2) can be approximately
evaluated at any f, by means of some numerical integration rule (such as
Trapezoidal), by choosing increment A= L/M, where M is a large integer. These
latter results are not adequate for I f 1>.5/A, because the approximation yielded by
this numerical integration procedure has period I/A in f. Furthermore, if we limit
the frequencies f, at which this numerical evaluation is conducted, to the values
n/(NA) (for n and N integer), the results can be realized as an N-point discrete
Fourier transform (DFT). Since the frequency spacing at which these values occur is
(NA)- and the width of the spectral window (2) is of the order I/L = (MA) - i , we
would also require N>M if we desire to observe fairly closely the changes in the
window (2) by means of an N-point DFT. There is no fundamental restriction on the
relative sizes of M and N; however, M must be large in order to obtain an accurate
approximation to (2).
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GENERAL WEIGHTING CONSIDERATIONS

The temporal weightings of interest here are of the form

K

w(t) "akcos(2nkt/L) for tj<L/2, (3)
Lk=0

where { ak }K are real constants. The weighting is symmetric about t = 0 and possesses
all orders of derivatives for I t I<L/2; however, discontinuities in w(t), defined by
(1) and (3), or in its derivatives, occur at t = ± L/2. These discontinuities dictate
the asymptotic behavior for large I f I of W(f) in (2). Without loss of generality, the
weighting is normalized according to

KK
I a=l; W(O) T[- ka - L (4)
k= 0 k

Observe from (3) that

L K
L lim w(t)= (- 1)ka, (5)

W(±- "-) Lk=O

which may or may not be equal to zero. If (5) is not zero, then weighting w(t) is
discontinuous at t ± L/2, and window W(f) will decay only as I/f for large f f

However, if (5) is zero, then w(t) is continuous for all t. Also, w '(t) is continuous
for all t, since we always have

LTK

w'(t)= - - kaksin(2nkt/L) for Il<L/2, (6)
L2 k-a

and

lim w '(t)=0; w'(t)=O for It>L/2. (7)

The last property follows from (1). Thus, when weighting values w( ± L/2) in (5) are
zero, w(t) and w '(t) are both continuous for all t.

However, w "(t) may then not be continuous at t = ± L/2. We have from (6),

4n2 K
w"t - [ k2 akcos(2Trkt/L) for It<L/2 (8)

Uk=

and

4172 K
lim w"(t)=- [- " (-])Ik 2 ak, (9)
[l/2 -k- 0

2



4!

TR 6239

which may or may not be zero. If (9) is not zero, then w "(t) is discontinuous at
t = t L/2, and W(f) will decay as I/f 3 for large I f I.

Conversely, if (9) is zero, then w"(t) is continuous for all t, and it follows
(similarly to above) that w"'(t) is continuous for all t. Then W(f) decays at least as
fast as I/f 5 for large I f 1. We will have occasion to use these relations later.

The spectral window corresponding to w(t) in (1) and (3) is given by (2) as the
closed form expression

W(f)= - sin(nLf) I-l)k ak for all f;
Tr k 0 L2f2_k2

W(n/L)= a I n O

SaIn, n#O (IOA)

If we expand (Lt2f 2-k 2)' in a power series in (j-) , we obtain

0 K
W(f)s- in(nl f) I " (-)k k2lla, for Lfj>K l

nLf n-0 iLf) 211 k-0 (lOB)

Thus, the quantities (5) and (9) considered above are simply the m =0 and m = 1
coefficients of this expansion; the asymptotic behavior of (10B) depends on the first
non-zero term in the ni-series, and will be plotted in the following figures as a dotted
line.

3... i
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/

DISCRETE FOURIER SERIES

When continuous temporal weighting is used in digital processing, it is sampled
and often transformed into the frequency domain, where its effect can be included
as a convolution of its discrete Fourier series with the data DFT. To evaluate this
discrete Fourier series, we begin by delaying the temporal weight to the interval
(0,L):

1 KwD3(t)-w ( t - )  7 (-l)kakcos(2Trkt/L)
K 2 k=0K

- " (-1) k Ek ak exp(i2rrkt/L) for 0<t< L,L k=-K(11)

where

1/ I2, kO:0 (12)

Let the sampling interval on weighting wD(t) be

A= L/M, (13)

where M is even; then samples (temporal weights)

WD(rnA) 'k ()kkakexp(i2nkm/M) for 0<m<M. (14)

Then for M>2K, the discrete Fourier series is given by the M-point DFT (ref. 2, ch.
3)*

M-1
X Awo(mA)exp(-i2Trmn/M) = (-l)n:nainI for nI(M/2 . (15A)

m=0

Thus, the effects of temporal weighting (14) can be incorporated in a digital
processing application as a frequency convolution of the data DFT with the
sequence

.... 0,0, (_1))I 1 1a
- aK  2 --- a", ao,-'-a aK, 0, 0, . . . . .  (15B)

This is one of the main reasons for employing weightings of the form (14) in digital
processing applications; namely, (he effects of temporal weighting are easily in-

* This consideration is different from that mentioned under (2),where we were

interested in approximately evaluating window W(f) in (2) by means of a DFT.

4
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cluded by means of convolution in the discrete frequency domain with a short
sequence of length 2K + 1.

The effect of sampling continuous weighting w(t) at increment A, in so far as the
effective window is concerned, is as follows. The effective window is*

We(f) = f dt AdA(t) w(t) exp(-i2nft)

= d(f) ® W(f)= W(f- -), (16)
AA

where da(x) is an infinite unit-area impulse train in x at spacing a. Thus there are
periodic replications in W(f) at multiples of 1/A; the aliasing at f= _ .5/A is ob-
vious. All the following results correspond to A=0, i.e., continuous weightings;
thus, there is no aliasing.

It

*Integrals without limits are over the range of non-zero integrand.
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HARRIS' WINDOWS

The first weighting to be considered is Hanning, for which there are only two
non-zero coefficients in (3):

a0 = .5, a,= .5, /(f)= sin(nLf)

2TrLf(1-L 2f2) (17)

Its power response in dB is plotted versus Lf in figure 1, normalized to the peak
response at f = 0; that is

dB 10 logtW(f)/W(O) 2  (18)

is plotted.* The largest sidelobe is -31.47 dB. Since (5) is zero for the weights in (17),
but (9) is not, the Hanning window has an asymptotic decay of 18 dB/octave; this
decay is tht. first non-zero term in (108).

The second weighting is Blackman (ref. 1, eq. 32):

a( =-.42, a, - .50, a, = .08. (19)

The window is depicted in figure 2. Again, (5) is zero, but (9) is not; thus the
asymptotic decay is 18 dB/octave. The largest sidelobe is -58.11 dB.

The "exact" Blackman weights are (ref. 1, p. 63)

a0= 7938/18608, a, = 9240/18608, a, = 1430/18608 . (20)

Now (5) is not zero; therefore, the window decays at only 6 dB/octave as shown in
figure 3. However, the largest sidelobe is -68.24 dB, not -51 dB as cited in ref. 1,
fig. 23. Also, the sidelobes in figure 3 are about 6 dB lower than those reported in
ref. 1, fig. 23.

The following four windows are listed in the table on page 65 of ref. 1. The
"minimum" 3-term weights are

a, = .42323, a, = .49755, a, = .07922. (21)

Since (5) is not zero, the window decay is only 6 dB/octave, as shown in figure 4.
The maximum sidelobe is -70.83 dB, not -67 dB as reported in ref. 1, figure 24 and
page 64.

* When the weighting is applied instead in the lag domain, as for Blackman-Tukey

spectral analysis, rather than in the time domain as presumed here, the window

appears linearly rather than as its square. In this case, the square must be removed

from the definition in (18), and all the plots require that the dB numbers on the

6 ordinate be halved. For example, the peak Hanning sidelobe is then -15.73 dB.
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The 3-term weights are

a0 = .44959, a, = .49364, a2 = .05677 . (22)

The corresponding window is given in figure 5 and has a maximum sidelobe of
-62.05 dB, rather than the -61 dB reported in ref. 1, p. 65. Since (5) is not zero, the
decay is only at 6 dB/octave, as indicated by the dotted line.

The "minimum" 4-term weights are*

a0 = .35875, a, = .48829, a, = .14128, a3 = .01168 . (23)

Although (5) is not zero, it is nearly so. Therefore, the initial decay of the window is
greater than 6 dB/octave; however, it must eventually decay only as 6 dB/octase.
The maximum sidelobe of the window is indicated in figure 6; it is -92 dB, as
reported in ref. 1.

The 4-term weights are

a, = .40217, a, = .49703, a, = .09892, a3 = .00188 (24)

The asymptotic decay is only 6 dB/octave, as shown in figure 7, and the largest
sidelobe is -74.39 dB, as claimed in ref. I, p. 65.

* These are not the weights actually listed in ref. I, page 65. However, the values

!isted there do not add up to I; accordingly, we have modified them according to the
comment under eq. 34, and made them sum to I (with the lowest sidelobe possible
by modifying just one of the last digits).

7
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RAPIDLY DECAYING WINDOWS WITH MINIMAL SIDELOBES

It was observed earlier that the window W(f) decays fairly rapidly for large f if (5)
is zero, and very rapidly if (9) is zero. Such windows will lead to spectral estimates
that are immune to strong interferences at frequencies removed from those of in-
terest. In this section, we will consider this class of windows in terms of the peak
sidelobe and asymptotic decay; the mainlobe width of each window is not discussed,
but is easily determined from the plots. Discontinuous weightings will be taken up
later.

If only two coefficients in weighting (3) are non-zero, satisfaction of (4), and
4- setting (5) equal to zero, yield

a0 +a, = 1, a0 -a, =0. (25)

The Hanning window satisfies these requirements and is plotted in figure 1. Con-& volution sequence (15B) is simply -1/4, 1/2, -1/4.

Moving on to three non-zero coefficients in (3), if we satisfy (4), and set (5) and
(9) equal to zero, we find

a0  3/8, a, = 4/8, a2 = 1/8 . (26)

'I

The weighting is

w(t)=-Lcos4 (nt/L) for jtI<L/2 . (27)

From (15B), the discrete Fourier series for convolution is

1 -4, 6, -4, 1
16 (28)

which are simply the binomial coefficients. As noted under (9), since the third
derivative of w(t) is continuous at t = + L/2, the window decays at a 30 dB/octave
rate. The plot in figure 8 indicates that the largest sidelobe is -46.74 dB.

Instead of forcing (9) equal to zero, we can use the one degree of freedom left,
after (4) is satisfied and (5) is set equal to zero, to minimize the maximum sidelobes.
The optimal weights are found to

ao = .40897, a, = .5, a, = .09103 . (29)

The corresponding window is presented in figure 9. The asymptotic decay is 18
dB/octave, and the two equal sidelobes are of size -64.19 dB. This is 6.1 dB better
than the -58.1 dB sidelobe of the Blackman window, yet the asymptotic decays are
equal. Although the maximum sidelobe of the "minimum" 3-term windowk in figure
4 is 6.6 dB better, that decay is only 6 dB/octave rather than the 18 dB/octave decay
here.

12



TR 6239

When we consider four non-zero coefficients in (3), we have several alternatives.
If we satisfy (4), set (5) and (9) both equal to zero, and also set the fourth derivative
of w(t) equal to zero at t = ± L/2, we have four equations in four unknowns, with
solution

ao, a, a2, a3 =10,15,6,1
32 (30)

The weighting is
l L

w(t)- - cos6 (Tit/L) for Itl < 2 (31)

and from (15B), the discrete Fourier series for convolution is

-1, 6,-15, 20, -15, 6, -i,

64 (32)

which are again the binomial coefficients. The window decays at a very fast rate of
42 dB/octave, since the fifth derivative of w(t) is continuous for all t. The plot in
figure 10 shows the maximum sidelobe to be -60.95 dB.

If we satisfy (4), and set (5) and (9) both equal to zero, but use the remaining
degree of freedom to minimize the maximum sidelobes, the optimal weights are
determined to be

a0 = .338946, a, = .481973, a, = .161054, a3 = .018027. (33)

The window is given in figure II and has two equal sidelobes of --82.60 dB. 1 he
asymptotic decay is 3') dB/octave, since the third derivative of w(t) is continuouS or

all t. Comparison with the "minimum" 4-term window in figure 6 re\eals a dit-
ference of 9.4 dB in the maximum sidelobe; however, the decay of figure II is much
faster at a 30 dB/octave rate. As far as the 4-term window in figure 7 is concerned,
figure II has an 8.2 dB better maximum sidelobe and a much better decay. 30
dB/octave versus 6 dB/octave.

Finally, if we satisfy (4), and set only (5) equal to zero, and use the remaining \% o
degrees of freedom to minimize the maximum sidelobes, the optimal \%ight,, are
found to be

a( = .355768, a, = .487396, a, = .144232, a3 = .012604 . (34)

The window is shown in figure 12 and has three equal sidelobes of -93.32 di. Notice
that this level is better than the purported "minimum" 4-term level of -92 dB
claimed in ref. I, pp. 64-65; and the asymptotic decay is 18 dB/octa\e, not 6
dB/octave. Furthermore, this level was achieved under the constraint of setting (5)
equal to zero. If' \e were to eliminate this constraint of a continuous \weighting
function, a sidelobe level loker than -93.32 dB can be achieved. (This problem and

13
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the determination of the true minimum 3-term window (to replace figure 4) are
undertaken in the next section.) Comparison with the 4-term window of figure 7
reveals an 18.9 dB peak-sidelobe improvement in tigure 12 and a better decay of 18
dB/octave instead of 6 dB/octave.

'11

-20

-40-48.74

-50 _

dB 
0

-w 0_

-100 . _.... CONTINUOUS THIRD

-110 
DERIVA TI IVE OF WEIGHTING

30 dB/OCTAVE DECAY
-120 n--

0 2 4 6 8 10 12 14 18 18 20
Lf

Figure&. Window for a = .375, a, = .5, 22 =.125

14



TR 6239

-10

-30__ __ __ __ ____ _ _

-40____ __ __ __ _ _

dB -50__ -t

64.19
-60 ___ _

I CONTINUIOUS FIRST

-60 ___IDERIVATIVE OF WIGHTING

4-90 
"o__ 18 dBIOCTAVE DECAY

-100
it0 2 4 6 8 10 12 14 16 18 20

Lf

Figure 9. Window for a = .40897. a, =.5, a2 = .09103

-30 -_ _

-40______ _ _

-50 -60.95

dB -60 
__ __ __

-70 _ _ _

-80 _ __ _ _ _ _

-go_0 _
CONTINUJOUS FIFTH

-100___ __ DERIVATIVE OF WEIGHTING

-110 __ - - ___1

-120 42 dO/OCTAVE DECAY

- 130D_
0 2 4 6 8 10 12 14 16 18 20

Lf

Figure 10. Window for a0 10/32, a, 15/32, a2 =6/32 a3 =1/32

15 F



TR 6239

-30-

-40-

_90__ CONTINUOUS THIRD
DERIVATIVE OF WEIGHTING

-110 _________ dB/CTAVE DECAY-

-120 _ _

Lf

Figure 11. Window for a = .338946, a, = .481973, a2 =.161054, a3 =.018027

- 10 ___ ______

-20 __

-30 - -_

-40 _

-50

dB -70 - CONTINUOUS FIRST

-SO__ 9.3 DERIVATIVE OF WEIGHTING

-90 - .... ._ ...... _

'B.OT V DECAY
-100/8

-110 __ ..

-120

-130 mm _ _ __ ____

0 2 4 a 8 10 12 14 16 18 20
Lf

Figure 12 Window for ao= .355768, a, =.487396 a2 =.144232. a.,= .012604
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MINIMUM SIDELOBE WINDOWS

If only two coefficients in weighting (3) are non-zcro, and we disregard the
continuity requirement (5), the one degree of freedom left, after normalization (4) is
satisfied, can be used to minimize the maximum sidelobes. The result is the familiar
Hamming window, plotted in figure 13, with coefficients

a0 = .53836, a, = .46164 . (35)

The two equal peak-sidelobes are -43.19 dB, and the asymptotic decay is only 6
dB/octave, as dictated by (10B) when (5) is not zero.

For three non-zero coefficients in (3), satisfaction of (4) leaves two degrees of
freedom. These can be used to realize the minimum 3-term window in figure 14, for
which the optimal coefficients are

a) = .4243801, a, = .4973406, a2 = .0782793. (36)

There are three equal peak-sidelobes of -71.48 d3, which is .65 dB better than figure
4, with an asymptotic decay of 6 dB/octave for both.

When four coefficients are non-zero in (3), there are three degrees of freedom left

after normalization (4). The minimum 4-term window results for coefficients

a( = .3635819, a, = .4891775, a, = .1365995, a- = .0106411 (37)

and is shown in figure 15. The four equal sidelobes are at level -98.17 dB, which is
6.16 dB better than figure 6, with an asymptotic decay of 6 dB/octave for both. This
sidelobe level is 4.85 dB better than figure 12, but the decay in figure 12 is 18
dB/octave.
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Figure 13. Hamming Window for a0 = .53836, a, = .46164
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(OMPARISON WITH KAISER-BESSEI AND VAN I)ER MAAS WINI)OWS

[he %s indoWs in figures 13, 14, and 15 are very similar to the Kaiscr-Be"Cl
%%indow. Specifically, the Kaiser-Bessel weighting and vindov are

)= k Io (BVI - (2t/l)- ) for t <L/2

sW(f) = f s -2 ) for all I,
'v" [ 2 (38)

respectively, where B is a parameter. If we choose B to make the first null of the
Kaiser-Bessel window lie at the three alternatives of Lf= 2,3,4 (as in figures 13, 14,

-and 15, respectively), we obtain the plots in figures 16, 17, and 18. The
corresponding mainlobe shapes are indistinguishable, and the asymptotic decays are
all 6 dB/octave. The immediate sidelobes of the Kaiser-Bessel windows are several
dB larger than the minimum results in figures 13, 14, and 15, but the distant
sidelobes of the Kaiser-Bessel windows are over 10 dB lower for the examples
considered. Thus, a trade-off exists between the peak sidelobe and the distant
sidelobe level.

The windows here are also similar to the ideal impulsive van der Maas xkindowN
given by

w(t) B I1 (BI- (2t/L)2) + I d (t_ L ) + 6 (t + ) forll < I <
L VF! - (2t/L)2 2

W(f) = cos (V( nLf )2 -1B2) for all f . (39)

This window is characterized by having the narrowest possible mainlobe width for a
specified sidelobe level, and vice versa. However, the window does not decay at all
for large f. The peak to sidelobe voltage level is SL-cosh (B), and the first nuLIll of
the window occurs at

L f/ +(40)

Thus, the first null location can be expressed in terms of the sidelobe level SL ac-
cording to

If1 + = - [nS (41)
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Table I shows this null location and the actual location for several of the windows
presented earlier, when the peak sidelobes are equal; the agreement is close,
especially for those windows with a 6 dB/octave decay, figures 13, 14, and 15.

Table 1. Comparison of Null Location ith van der Maas Case

van der Maas
Figure Number Null Location Null Location

9 3 2.62
11 4 3.29
12 4 3.67
13 2 1.87
14 3 2.88
15 4 3.85

C -

-10

-20___ _

dB -50__________

-70

0 2 4 6 8 10 12 14 16 18 20
Lt

Figure 16. Kaiser-Bcssel Windt)% %ith First Null at L~f =2
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Figure 17. Kaiser-Bessel Window with First Null at Lf =3
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Figure 18. Kaiser-Bessel Window with First Null at L = 4
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DISCRETE HILBERT TRANSFORM

For a continuous-time real waveform x(t), the (voltage-density) spectrum

X(f) f dt x(t) exp (-i2rrft) (42)

is conjugate symmetric about f=-0; i.e., X(-f) = X*(f). If we suppress the negative-
frequency components and double the positive-frequency components, we obtain
the analytic w aveform:

X, (f) [I + sgn(f)J X(f), (43)

and

x (I) -x(t) + ixit(t) . (44)

Here x11(t) is the Hilbert transform of x(t):

XH(t) = xj-®X(t) = +d xr) (45)Tr -T

When we consider instead a discrete-time real waveform \with samples occurring
every A seconds, the spectrum has period I/A, and the discrete Hilbert transform
(DHT) takes another form (ref. 2, ch. 7). Specifically, the Fourier coefficients oran
N-point DFT of the waveform samples are multiplied by the sequence ti,

where (ref. 2, p. 354)

I I, n =0and n = N/2 1
2,0<n<N/2
0,N/2<n < N-! (46)

However, this ideal characteristic exists only in a theoretical sense; its effect must be
approximated in practice (ref. 2, p. 361).

A method of obtaining an accurate DHT for long data sequences is noN\
presented. We begin by considering a continuous cosine wave at frequency f,,:

x(t) = A cos (2nf,,t f 0) . (47)

The spectrum of this waveform, from the infinite transform (42), is a pair of im-
pulses:

A AX(f) - - exp(i0) d(f-t%) + e p ep(-i0) d(f+ f(,) . (48)
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Then, as above,

X,(f) = Aexp(iO)d(f-f0)

x (t) = A exp (i2nrf 0 t + iO)

- A cos(2nfot + 0) + i A sin(2nf 0t + 0) . (49)

Thus, the Hilbert transform of x(t) in (47) is the sine component.

The procedure above succeeded because we completely eliminated the negative-
frequency components of (48). However, suppose we compute the spectrum from a
weighted time-limited segment of x(t) in (47). Thus:

"4 y(t) = w(t)x(t)

Y(f) = W(f) ® X(f)

A A2 exp(iO) W(f-f) + -T exp(-iO) W(f+ f) , (50)

where weighting w(t) satisfies (1). Figure 19 illustrates spillover of the negative- and
positive-frequency components across the f=0 border. This spillover call be
controlled by choosing a window W(f) with low near-by sidelobes and rapid decay
of distant sidelobes. Then, if Lf,) is large enough, when we multiply Y(f) by
I + sgn(t) to yield Z(f), there will be little distortion from the desired function

D(f) = A exp(ie) W(f-ft) for all f

d(t) = A exp(i2ntt + iB) wt) . (51)

We can then inverse Fourier transform Z(f) to yield z(t), and then divide z(t) by
weighting w(t), in an attempt to approximate analytic waveform x, (t). This method
will succeed in the interior region of the particular segment of the real data
waveform selected, but will be in error near the edges of the segment because the
neighboring data points (outside the selected segment) were never accounted for.
This insufficiency can be alleviated by using tapered temporal weighting and (say)
50% overlapped segments, but retaining only the central 50% of the output data
points of each segment, after the processing indicated above is carried out. How
successful the technique is depends critically on Lf 0 and the window W(f).

For a discrete-time waveform, the considerations are similar to those presented
above, c .cept that we no%% employ the discrete multiplicati\e \windo\, (46) (instead
of I + sgn(f)), and that Nyquist frequency (2A) I must also be considered, in ad-
dition to /ero frequency, in terms of spillover. The procedure to be investigated is as
follows: a long real data sequence {x, is broken tip into segments of length N,
where adjacent segments overlap by 50%. Temporal weighting {.,j is

multiplicatively applied to the N data points of a segment, and an N-point D)FT is
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taken of this product sequence. Sequence {u,,}( 1 in (46) is then applied
multiplicatively to the complex DFT output. An inverse DFT of this product is

evaluated, and the result divided by weighting Iw,,} ' N. Then only the interior 50/
of these N complex values are retained, and the other 50% discarded. By then

abutting values of adjacent segment outputs, we obtain the analytic waveform
sequence corresponding to the original real data sequence {x,J. Very long data

sequences can be handled in this manner; only the extreme edges are subject to
significant error.

If we look at some of the better windows presented earlier, for example figures
11, 12, and 15, we see that very deep sidelobes are realized and maintained for

S-ILfl>4. Thus for a sinusoid at frequency f0 , spillover is small in figure 19 if

:4 < o< I -4 2
. < f < 2A L

the upper bound is due to spillover at the Nyquist frequency. Since segment length L
is composed of N data points, (52) can be expressed as

4 ifA 4 (53)
N2 N

For example, a 1024-point DFT yields

.004 < fOA < .496 . (54)

Thus, the majority of frequency components in sequence {xl are capable of %ery
accurate Hilbert transformation. To widen the bounds in (52), we must increase L
and decrease A. If A is chosen to minimize aliasing in the first place, the only
recourse is to increase N, the number of points in each data segment. Thus, larger-
size DFTs should perform better in terms of lower error of the DHT and lowser
allowed frequencies in the given sequence {xnll.

YMI

I/L

Figure 19. Spectrum of Weighted Time-limited Segment of x(t)
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SIMULATION RESULTS

The fifteen weightings given earlier are summarized in table 2. They have been
tried as candidates for the DHT technique presented in the previous section. Input
signals composed of real unit-amplitude pure tones at several different frequencies
and phases have been used to test the accuracy of the DHT technique. In particular,
tone frequencies f0 , taking the four values

f0 = {\2/5, 12/27, \/2/65, v'2/350} = {.283, .052, .022, .0041 (55)

were selected. (The square root was used to avoid taking synchronized periodic
samples of the input waveform. It was found that samples synchronized with the
tone frequency, such as f0A= .25, gave inordinately small errors.) The phases of
each tone were taken as 0 and -n/2 corresponding to a cosine and sine waveform,
respectively. Intermediate-phase tones are available as linear combinations of these
two cases.

Table 2. Window Characteristics

Peak Sidelobe As) mplolic Ileca
Weighling (dB) (dR/oclae)

I. Harming -31.47 18
2. Blackman -58.11 18
3. Exact Blackman -68.24 6
4. "Minimum" 3-Term -70.83 6
5. 3-Term -62.05 6
6. "Minimum" 4-Term -92.01 6
7. 4-Term -74.39 6
8. 3-Term with Continuous Third Derivative -46.74 30
9. 3-Term with Continuous First Derivative -64.19 is

10. 4-Term with Continuous Fifth Derivative -60.95 42
II. 4-Term with Continuous Third Derivalive -82.60 30
12. 4-Term with Continuous First I)eriatic -93.32 18
13. Hamming -43.19 6
14. Minimum 3-Term -71.48 6
15. Minimum 4-Term -98.17 6

Since the Hilbert transform of a cosine with arbitrary phase is a sine of the same
phase (see (49)), we can compute the error of the DHT technique very easily for pure
tones. For the retained interior 50% output data points of each segment, four error
measures were evaluated. They were the maximum magnitude-error and the average
magnitude-error for both the real and imaginary parts of the analytic waveform
sequence. The two error measures (maximum and average) for the rea' part were
virtually zero, because of the trigonometric funcion error and the round-off noise
of the 12-digit calculator employed. The average magnitude-error measure for the
imaginary part of the analytic sequence, i.e., the error of the discrete Hilbert
transform, is presented in tables 3-6 for the four tone frequencies listed in (55). A
program for the DHT technique and the error calculation is presented in the ap-
pendix.
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The first fact to observe from tables 3-6 is that the quality of the DHT varies
greatly with the window. In fact, the ratio of errors can become as large as 300,000
when we consider different windows for a specified waveform. In order to present
the numerical values more conveniently for comparison, the errors have been scaled
by l09 in tables 3-5 and by 101 in table 6. Thus, sorne of the errors listed in tables 3-6
are small indeed.

The maximum magnitude-error, for all the input frequencies, phases, and
windows considered, was approximately 4-to-6 times larger than the average
magnitude-error. (It has not been tabulated here, in order to save space.)

When the data frequency, f0, is near the center of the zero-to-Nyquist frequency
band, the best windows are observed from tables 2 and 3 to be those for 'A hich the
asymptotic decay is 18 dB/octave or better. This holds regardless of tile size of the
near-by sidelobes. Even the windo~k in figure 15, with a peak sidelobe less than -98
dB, does not perform as well as the Hanning \Nindo\% which has a -31.5 dB sidclobe;
in fact, the error is about 70 times larger. This numerical result is consistent ssith the
discussion surrounding figure 19 - we hase x irtually eliminated spillover across the

,f= 0 and f= .5/A borders by using rapidly deca0ing s indosss, when f .'A

When the frequency, f0 , is lowered to one-tenth of the Nyquist frequency, the best
windows are those with decays of 30 dB/octase or better; see table 4. This trend
continues in table 5 for f0 equal to 0.044 of the Nyquisl freqtenc,, ", here the sole
window with a 42 dB/octave decay is observed to be best.

However, when data frequency, fo, approaches the hounds of' (531, a different
ordering of windows is obser\ed; see table 6). No\\ the windo\%s wNith the deepest
near-by sidelobes (cases 6 and 15 in table 2) haxc the least error, although the range
of errors in table 6 are less pronounced than those in the pre\iounS tables. Thus, the
best weighting w(t) to employ depends on the spectrum of the data sequence {x,
that we are subjecting to the DHT. A compromise between deep near-y sidelobes
and fast asymptotic decay must be accepted for a wa.eform occupying most of the
zero-to-Nyquist frequency band. For example, the aserage magnitude-errors for tile
minimum 4-term window of figure 15 are approximately

.5E-6, 1.6F-6, 2.6E-6, 6.3E-6 (56)

for the four frequencies considered in tables 3-6. This is a very small error and
indicates that the proposed DHT technique has considerable merit, proided tile
weighting in (50) is chosen appropriately.

Other waveforms were simulated and subjected to the DHT and error analysis.
They included narrow-band waveforms, high-frequency tones (near Nyquist), and
other phases than 0 and -n/2. No surprises were encountered; results were con-
sistent with those already presented above. Also a simple Gaussian %eighting \\ith
several different standard deviations was tried: the best Gaussian weighting occured
when it was set equal to .0053 at the segment edges and .27 at the edges of the
retained points. Although tie error of the DHT could be made to be \cry good for
tone frequencies %cll-removed from zero and Nyquist frequency, it sas poorer for
frequencies fairly near zero and Nyquist: the "orst error %%as 1.361-4 at fA
0.044, which is 20 times worse than can be realized \,itlh veighting 15 in table 6. This
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is due to the spillover caused by the wide mainlobe of the Gaussian window when
the effective duration of the weighting is chosen narrower than the segment length.

Table 3. Average Magnitude-Error for fA = \//5 = .283

Error x 109 for
Weighting Cosine Sine

1 2.83 8.52
2 1.89 4.18
3 6050. 7470.
4 4350. 5370.
5 10500. 12900.
6 70.4 86.4
7 2090. 2580.
8 1.38 1.45
9 1.75 3.47

10 1.38 1.45
I1 1.38 1.45
12 1.41 1.72
13 52400. 64700.
14 4700. 5810.
15 415, 512.

Table 4. Average Magnitude-Error for foA \2 /27 = .052

Error x 109 for
Weighting Cosine Sine

I 305. 454.
2 138. 206.
3 16300. 24400.
4 11700. 17500.
5 28200. 42300.
6 164. 245.
7 5580. 8360.
8 .56 .77
9 108. 161.
10 .23 .23
I1 .37 .48
12 24.3 36.2
13 142000. 213000.
14 12700. 19000.
15 1090. 1630.
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Table 5. Average Magnitude-Error for fOA A /65 =.022

Error x 109 for
Weighting Cosine Sine

1 4360. 6020.
2 1950. 2700.
3 33100. 45800.
4 23300. 32200.
5 58000. 80300.
6 61.1 52.0
7 10700. 14900.
8 39.5 54.3
9 1520, 2110.

10 .93 1.27
11 20.4 28.1
12 326. 452.
13 30000. 416000.
14 25300. 35100.

IS1890. 2620.

Table 6. Average Magnitude-Error for I 0A V /350 = .004

Error x 106 for
Weighting Cosine Sine

1495. 501.
2 154. 86.1
3 24.0 50.6
4 45.2 50.5
5 61.5 129.
6 7.01 7.27
7 29.3 15.4
8 132. 241.
9 95.4 45.6

10 189. 398.
11 34.0 70.6
12 9.07 15.3
13 899. 429.
14 41. 53.3
15 3.71 6.31
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SUMMARY

When strong interference, either tonal or narrowband, occurs additively with a
desired signal, its effect on frequencies removed from the interference band can be
greatly reduced by using windows with low sidelobes and significant decay of the
sidelobes. Thus close-by interference rejection requires the immediate sidelobe
region of the window to be small, while distant interference rejection requires a
rapidly-decaying sidelobe response. The type of windows considered here furnish
several alternative choices, depending on the application of interest, and range from
-31 dB to -98 dB for the peak sidelobe, or 6 dB/octave to 42 dB/octave for the
asymptotic decay. The weighting given by (3) is non-negative for all the numerical
coefficients listed here.

Use of some of these windows in a proposed discrete Hilbert transform technique
yields very small errors over a wide range of frequency components of the given
data sequence, provided that 50% overlapped processing is employed. Two DFTs

are necessary per segment, and the edge 5007o of the output values of each segment
must be discarded. Larger-size DFTs yield less error, especially for frequencies near
the bounds in (53), but they require more sto-age.
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Appendix

PROGRAM FOR DISCRETE HILBERT TRANSFORM

The subroutine for the DHT technique described earlier is contained in lines 660-
820 of the program listed below in table A-I. The remainder of the program con-
tains the data creation, the weightings in lines 100-240, the error calculation, and a
DFT in the subroutine beginning with line 830. On input to the DHT subroutine call
in line 500, array X contains the N-point data segment to be Hilbert transformed,
and array Y is zero. On output from the DHT subroutine call, elements N/4 to
3N/4 of arrays X and Y contain the central half of the original data segment and its
DHT, respectively.

Table A-I. Program for Discrete Hilbert Transform

10 Fde1=SQR(2).5 I 5,27,65.350
20 Phase=-P I/2
30 N=1024 I SIZE OF FFT
40 PRINTER IS 0
50 PRINT "FOdel =";FOdel ,"Phase =";Phase,.l " N
60 PRINT
70 OPTION BASE I
8 DIM X(1024),Yv:1624rc.lOi4),S(Ie24),I4jIo24)
90 DIM H(6:59,A'6:3)
166 DATA .5,.5,0,0
i16 DATA .42,.5,.08,0
120 DATA .42659,.49656,.07685,0
130 DATA .42323,.49755,.07922,0
140 DATA .44959,.49364,.0567?,0
150 DATA .35875,.48829,.14128,.01168
160 DATA .40217,.49703,.09892,.00188
170 DATA .375,.5,.125,0
180 DATA .40897,.5,.09103,0
190 DATA .3125,.46875,.1875,.03125
200 DATA .338946,.481973,.161054,.018027
210 DATA .355768,.487396,.144232,.012604
220 DATA .53836,.46164,0,0
230 DATA .4243801,.4973406,.0762793,0
240 DATA .3635819,.4891775,.1365995,.010641
250 READ H(*)
260 T=2*PI*FOde1
270 FOR K=1 TO N
280 B=T*K+Phas.
290 C(K)=COS(B)
30 S(K)=SIN(B)
316 NEXT K
320 FOR Ncl TO 15
330 FOR L=O TO 3
340 A(L)=H(L+4*(Nc-1))
350 NEXT L
360 PRINT " ";Nc;"," :A O);A(II A 2.;A'3)
370 A(l=-P(l)
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380 A'(3)=-AC3)
390 T=2*P1/,(tIl)
400 FOR K=1 TO N
410 D=T*V
420 S=A0o)
430 FOR L=1 TO 3
440 S=S+R(L)*COS(L*B)
450 NEXT L
460 W(K).=S
470 NEXT K
480 MAT X=C
490 MAT Y=ZER
500 CALL flhtKN,(*,7(*-,W(*))
510 Mrf i =r.=A iu
520 FOR K=N/'4 TO :3*tA/4
53:-0 Dr-AES C(K) -X(K))
540 Di=AB$:S(KI-Y(K))
550 Mr=MAX (Mr, Dir)

4 560 M 1=M1AXM i ,D i
570 Air=Fr+Dr

* 560 Ai=Ai+fl,
590'7 NEXT K
6l0l0 FRINIT Mr, jli , Air.( 5*N+ 1), A i 5 *N +1>.

61C0 PRINT
620 N EXT N c
cCU PP t4T L IN('. 
640 PRINTER IS 16

7 65: ENI'
6u P;c UB Ti ht i,2.*1 ,*)W*) ISOP:FETE HI LPERT TPRNSf~cFOlRM
670 MAT X=X.W
680 CALL Fft10r(N,X(*),V(*))
696 FOR K=2 TO N/2
700 X(K)=X(K)*2
716 Y(K)=-Y(K)*2
720 NEXT K
73e FOR K=N/2+2 TO N
740 X(K,.=Y(IcDO
750 NEXT K
766 CALL FftlO(N,X(*),Y(*))
776 FOR K=N'4 TO 3*N.'4
786 T=lz/kJ(K)*N)
790 X(K)=X(K)*T
800 Y(K)=-Y(K)*T
816 NEXT K
826 SUDEND
836 SUB FftlO(N,XC'*),Y(*)) N <= 2-10 =102-74, N=2'-INTEG]ER
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